01806nas a2200205 4500000000100000008004100001100001500042700001300057700001500070700001600085700001400101700001700115700001800132245009100150250001500241300001000256490000700266520128100273020004601554 2012 d1 aGrobbee D.1 aMoons K.1 aRoyston P.1 aVergouwe Y.1 aAltman D.1 aKengne Andre1 aWoodward Mark00aRisk prediction models: II. External validation, model updating, and impact assessment a2012/03/09 a691-80 v983 a
Clinical prediction models are increasingly used to complement clinical reasoning and decision-making in modern medicine, in general, and in the cardiovascular domain, in particular. To these ends, developed models first and foremost need to provide accurate and (internally and externally) validated estimates of probabilities of specific health conditions or outcomes in the targeted individuals. Subsequently, the adoption of such models by professionals must guide their decision-making, and improve patient outcomes and the cost-effectiveness of care. In the first paper of this series of two companion papers, issues relating to prediction model development, their internal validation, and estimating the added value of a new (bio)marker to existing predictors were discussed. In this second paper, an overview is provided of the consecutive steps for the assessment of the model's predictive performance in new individuals (external validation studies), how to adjust or update existing models to local circumstances or with new predictors, and how to investigate the impact of the uptake of prediction models on clinical decision-making and patient outcomes (impact studies). Each step is illustrated with empirical examples from the cardiovascular field.
a1468-201X (Electronic)1355-6037 (Linking)