03119nas a2200265 4500000000100000008004100001100001600042700002000058700001900078700001700097700001800114700002100132700001900153700001300172700001600185700001800201700001800219700001300237700002000250700001300270245011900283300001800402520241900420022001402839 2018 d1 aMcGale Paul1 aBrønnum Dorthe1 aCorrea Candace1 aCutter David1 aGigante Bruna1 aJensen Maj-Britt1 aTaylor Carolyn1 aHall Per1 aDarby Sarah1 aDuane Frances1 aLorenzen Ebbe1 aWang Zhe1 aEwertz Marianne1 aRahimi K00aCardiac Structure Injury After Radiotherapy for Breast Cancer: Cross-Sectional Study With Individual Patient Data. aJCO20177763513 a

Purpose Incidental cardiac irradiation can cause cardiac injury, but little is known about the effect of radiation on specific cardiac segments. Methods For 456 women who received breast cancer radiotherapy between 1958 and 2001 and then later experienced a major coronary event, information was obtained on the radiotherapy regimen they received and on the location of their cardiac injury. For 414 women, all with documented location of left ventricular (LV) injury, doses to five LV segments were estimated. For 133 women, all with documented location of coronary artery disease with ≥ 70% stenosis, doses to six coronary artery segments were estimated. For each segment, numbers of women with left-sided and right-sided breast cancer were compared. Results Of women with LV injury, 243 had left-sided breast cancer and 171 had right-sided breast cancer (ratio of left v right, 1.42; 95% CI, 1.17 to 1.73), reflecting the higher typical LV radiation doses in left-sided cancer (average dose left-sided, 8.3 Gy; average dose right-sided, 0.6 Gy; left minus right dose difference, 7.7 Gy). For individual LV segments, the ratios of women with left- versus right-sided radiotherapy were as follows: inferior, 0.94 (95% CI, 0.70 to 1.25); lateral, 1.42 (95% CI, 1.04 to 1.95); septal, 2.09 (95% CI, 1.37 to 3.19); anterior, 1.85 (95% CI, 1.39 to 2.46); and apex, 4.64 (95% CI, 2.42 to 8.90); corresponding left-minus-right dose differences for these segments were 2.7, 4.9, 7.2, 10.4, and 21.6 Gy, respectively ( P < .001). For women with coronary artery disease, the ratios of women with left- versus right-radiotherapy for individual coronary artery segments were as follows: right coronary artery proximal, 0.48 (95% CI, 0.26 to 0.91); right coronary artery mid or distal, 1.69 (95% CI, 0.85 to 3.36); circumflex proximal, 1.46 (95% CI, 0.72 to 2.96); circumflex distal, 1.11 (95% CI, 0.45 to 2.73); left anterior descending proximal, 1.89 (95% CI, 1.07 to 3.34); and left anterior descending mid or distal, 2.33 (95% CI, 1.19 to 4.59); corresponding left-minus-right dose differences for these segements were -5.0, -2.5, 1.6, 3.5, 9.5, and 38.8 Gy ( P = .002). Conclusion For individual LV and coronary artery segments, higher radiation doses were strongly associated with more frequent injury, suggesting that all segments are sensitive to radiation and that doses to all segments should be minimized.

 a1527-7755