TY - JOUR AU - Flabouris A. AU - Chen J. AU - Finfer Simon AU - Bellomo Rinaldo AU - Hillman K. AB -
BACKGROUND: To compare two approaches to the statistical analysis of the relationship between the baseline incidence of adverse events and the effect of medical emergency teams (METs). METHODS: Using data from a cluster randomized controlled trial (the MERIT study), we analysed the relationship between the baseline incidence of adverse events and its change from baseline to the MET activation phase using quadratic modelling techniques. We compared the findings with those obtained with conventional subgroup analysis. RESULTS: Using linear and quadratic modelling techniques, we found that each unit increase in the baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent reduction in adverse events (95%CI: 0.33 to 0.86) after MET implementation and activation. This applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%CI: 0.26 to 0.85) and unexpected deaths (0.68; 95%CI: 0.45 to 0.90). Control hospitals showed a similar reduction only for cardiac arrests (0.95; 95%CI: 0.56 to 1.32). Comparison using conventional subgroup analysis, on the other hand, detected no significant difference between MET and control hospitals. CONCLUSIONS: Our study showed that, in the MERIT study, when there was dependence of treatment effect on baseline performance, an approach based on regression modelling helped illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability to assess the nature and magnitude of such dependence may have policy implications. Regression technique may thus prove useful in analysing data when there is a conditional treatment effect.
AD - The Simpson Centre for Health Services Research, University of New South Wales, Sydney, New South Wales, Australia. jackchen@unsw.edu.au AN - 20021683 BT - Trials ET - 2009/12/22 LA - eng N1 - Chen, JackFlabouris, ArthasBellomo, RinaldoHillman, KenFinfer, SimonMERIT investigators for the Simpson CentreANZICS Clinical Trial GroupComparative StudyRandomized Controlled TrialResearch Support, Non-U.S. Gov'tEnglandTrialsTrials. 2009 Dec 19;10:117. N2 -BACKGROUND: To compare two approaches to the statistical analysis of the relationship between the baseline incidence of adverse events and the effect of medical emergency teams (METs). METHODS: Using data from a cluster randomized controlled trial (the MERIT study), we analysed the relationship between the baseline incidence of adverse events and its change from baseline to the MET activation phase using quadratic modelling techniques. We compared the findings with those obtained with conventional subgroup analysis. RESULTS: Using linear and quadratic modelling techniques, we found that each unit increase in the baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent reduction in adverse events (95%CI: 0.33 to 0.86) after MET implementation and activation. This applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%CI: 0.26 to 0.85) and unexpected deaths (0.68; 95%CI: 0.45 to 0.90). Control hospitals showed a similar reduction only for cardiac arrests (0.95; 95%CI: 0.56 to 1.32). Comparison using conventional subgroup analysis, on the other hand, detected no significant difference between MET and control hospitals. CONCLUSIONS: Our study showed that, in the MERIT study, when there was dependence of treatment effect on baseline performance, an approach based on regression modelling helped illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability to assess the nature and magnitude of such dependence may have policy implications. Regression technique may thus prove useful in analysing data when there is a conditional treatment effect.
PY - 2009 SN - 1745-6215 (Electronic)1745-6215 (Linking) EP - 117 T2 - Trials TI - Baseline hospital performance and the impact of medical emergency teams: modelling vs. conventional subgroup analysis VL - 10 ER -