TY - JOUR AU - Keay Lisa AU - Ivers R. AU - Coxon K. AU - Clarke E. AU - Brown J. AU - Chevalier A. AU - Chevalier A. AU - Wall J. AB -
The data presented in this article are related to the research article entitled "A longitudinal investigation of the predictors of older drivers speeding behavior" (Chevalier et al., 2016) [1], wherein these speed events were used to investigate older drivers speeding behavior and the influence of cognition, vision, functional decline, and self-reported citations and crashes on speeding behavior over a year of driving. Naturalistic speeding behavior data were collected for up to 52 weeks from volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Global Positioning System (GPS) data were recorded at each second and determined driving speed through triangulation of satellite collected location data. Driving speed data were linked with mapped speed zone data based on a service-provider database. To measure speeding behavior, speed events were defined as driving 1 km/h or more, with a 3% tolerance, above a single speed limit, averaged over 30 s. The data contains a row per 124,374 speed events. This article contains information about data processing and quality control.
AD - The George Institute for Global Health, Sydney Medical School, The University of Sydney, GPO Box 5389, Sydney, NSW 2001, Australia.The data presented in this article are related to the research article entitled "A longitudinal investigation of the predictors of older drivers speeding behavior" (Chevalier et al., 2016) [1], wherein these speed events were used to investigate older drivers speeding behavior and the influence of cognition, vision, functional decline, and self-reported citations and crashes on speeding behavior over a year of driving. Naturalistic speeding behavior data were collected for up to 52 weeks from volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Global Positioning System (GPS) data were recorded at each second and determined driving speed through triangulation of satellite collected location data. Driving speed data were linked with mapped speed zone data based on a service-provider database. To measure speeding behavior, speed events were defined as driving 1 km/h or more, with a 3% tolerance, above a single speed limit, averaged over 30 s. The data contains a row per 124,374 speed events. This article contains information about data processing and quality control.
PY - 2016 SN - 2352-3409 (Electronic)