TY - JOUR AU - Keay Lisa AU - Ivers R. AU - Coxon K. AU - Clarke E. AU - Brown J. AU - Boufous S. AU - Chevalier A. AU - Rogers K. AU - Chevalier A. AB -
The data presented in this article are related to the research manuscript "Predictors of older drivers' involvement in rapid deceleration events", which investigates potential predictors of older drivers' involvement in rapid deceleration events including measures of vision, cognitive function and driving confidence (A. Chevalier et al., 2016) [1]. In naturalistic driving studies such as this, when sample size is not large enough to allow crashes to be used to investigate driver safety, rapid deceleration events may be used as a surrogate safety measure. Naturalistic driving data were collected for up to 52 weeks from 182 volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Accelerometer data were recorded 32 times per second and Global Positioning System (GPS) data each second. To measure rapid deceleration behavior, rapid deceleration events (RDEs) were defined as having at least one data point at or above the deceleration threshold of 750 milli-g (7.35 m/s2). All events were constrained to a maximum 5 s duration. The dataset provided with this article contains 473 events, with a row per RDE. This article also contains information about data processing, treatment and quality control. The methods and data presented here may assist with planning and analysis of future studies into rapid deceleration behaviour using in-vehicle monitoring.
AD - The George Institute for Global Health, Sydney Medical School, The University of Sydney, PO Box M201, Missenden Rd, Sydney, NSW 2050, Australia.The data presented in this article are related to the research manuscript "Predictors of older drivers' involvement in rapid deceleration events", which investigates potential predictors of older drivers' involvement in rapid deceleration events including measures of vision, cognitive function and driving confidence (A. Chevalier et al., 2016) [1]. In naturalistic driving studies such as this, when sample size is not large enough to allow crashes to be used to investigate driver safety, rapid deceleration events may be used as a surrogate safety measure. Naturalistic driving data were collected for up to 52 weeks from 182 volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Accelerometer data were recorded 32 times per second and Global Positioning System (GPS) data each second. To measure rapid deceleration behavior, rapid deceleration events (RDEs) were defined as having at least one data point at or above the deceleration threshold of 750 milli-g (7.35 m/s2). All events were constrained to a maximum 5 s duration. The dataset provided with this article contains 473 events, with a row per RDE. This article also contains information about data processing, treatment and quality control. The methods and data presented here may assist with planning and analysis of future studies into rapid deceleration behaviour using in-vehicle monitoring.
PY - 2016 SN - 2352-3409 (Linking) SP - 909 EP - 916 ST - Data in briefData in brief T2 - Data BriefData BriefData Brief TI - Naturalistic rapid deceleration data: Drivers aged 75 years and older VL - 9 Y2 - FY17 ER -