TY - JOUR AU - Thiagalingam Aravinda AU - Bhaskaran Abhishek AU - Chik William AU - Pouliopoulos Jim AU - Nalliah Chrishan AU - Qian Pierre AU - Barry Tony AU - Nadri Fazlur AU - Samanta Rahul AU - Tran Ying AU - Thomas Stuart AU - Kovoor Pramesh AB -
Aims: Longer procedural time is associated with complications in radiofrequency atrial fibrillation ablation. We sought to reduce ablation time and thereby potentially reduce complications. The aim was to compare the dimensions and complications of 40 W/30 s setting to that of high-power ablations (50-80 W) for 5 s in the in vitro and in vivo models.
Methods and results: In vitro ablations-40 W/30 s were compared with 40-80 W powers for 5 s. In vivo ablations-40 W/30 s were compared with 50-80 W powers for 5 s. All in vivo ablations were performed with 10 g contact force and 30 mL/min irrigation rate. Steam pops and depth of lung lesions identified post-mortem were noted as complications. A total of 72 lesions on the non-trabeculated part of right atrium were performed in 10 Ovine. All in vitro ablations except for the 40 W/5 s setting achieved the critical lesion depth of 2 mm. For in vivo ablations, all lesions were transmural, and the lesion depths for the settings of 40 W/30 s, 50 W/5 s, 60 W/5 s, 70 W/5 s, and 80 W/5 s were 2.2 ± 0.5, 2.3 ± 0.5, 2.1 ± 0.4, 2.0 ± 0.3, and 2.3 ± 0.7 mm, respectively. The lesion depths of short-duration ablations were similar to that of the conventional ablation. Steam pops occurred in the ablation settings of 40 W/30 s and 80 W/5 s in 8 and 11% of ablations, respectively. Complications were absent in short-duration ablations of 50 and 60 W.
Conclusion: High-power, short-duration atrial ablation was as safe and effective as the conventional ablation. Compared with the conventional 40 W/30 s setting, 50 and 60 W ablation for 5 s achieved transmurality and had fewer complications.
BT - Europace DO - 10.1093/europace/euw077 IS - 5 J2 - Europace LA - eng N2 -Aims: Longer procedural time is associated with complications in radiofrequency atrial fibrillation ablation. We sought to reduce ablation time and thereby potentially reduce complications. The aim was to compare the dimensions and complications of 40 W/30 s setting to that of high-power ablations (50-80 W) for 5 s in the in vitro and in vivo models.
Methods and results: In vitro ablations-40 W/30 s were compared with 40-80 W powers for 5 s. In vivo ablations-40 W/30 s were compared with 50-80 W powers for 5 s. All in vivo ablations were performed with 10 g contact force and 30 mL/min irrigation rate. Steam pops and depth of lung lesions identified post-mortem were noted as complications. A total of 72 lesions on the non-trabeculated part of right atrium were performed in 10 Ovine. All in vitro ablations except for the 40 W/5 s setting achieved the critical lesion depth of 2 mm. For in vivo ablations, all lesions were transmural, and the lesion depths for the settings of 40 W/30 s, 50 W/5 s, 60 W/5 s, 70 W/5 s, and 80 W/5 s were 2.2 ± 0.5, 2.3 ± 0.5, 2.1 ± 0.4, 2.0 ± 0.3, and 2.3 ± 0.7 mm, respectively. The lesion depths of short-duration ablations were similar to that of the conventional ablation. Steam pops occurred in the ablation settings of 40 W/30 s and 80 W/5 s in 8 and 11% of ablations, respectively. Complications were absent in short-duration ablations of 50 and 60 W.
Conclusion: High-power, short-duration atrial ablation was as safe and effective as the conventional ablation. Compared with the conventional 40 W/30 s setting, 50 and 60 W ablation for 5 s achieved transmurality and had fewer complications.
PY - 2017 SP - 874 EP - 880 T2 - Europace TI - Five seconds of 50-60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. VL - 19 SN - 1532-2092 ER -