TY - JOUR AU - Gårdlund Bengt AU - B Thompson Taylor AU - Marshall John AU - Finfer Simon AU - Dmitrieva Natalia AU - Pieper Carl AB -
PURPOSE: Septic shock is a highly heterogeneous condition which is part of the challenge in its diagnosis and treatment. In this study we aim to identify clinically relevant subphenotypes of septic shock using a novel statistic al approach.
METHODS: Baseline patient data from a large global clinical trial of septic shock (n = 1696) was analysed using latent class analysis (LCA). This approach allowed investigators to identify subgroups in a heterogeneous population by estimating a categorical latent variable that detects relatively homogeneous subgroups within a complex phenomenon.
RESULTS: LCA identified six different, clinically meaningful subphenotypes of septic shock each with a typical profile: (1) "Uncomplicated Septic Shock, (2) "Pneumonia with adult respiratory distress syndrome (ARDS)", (3) "Postoperative Abdominal", (4) "Severe Septic Shock", (5): "Pneumonia with ARDS and multiple organ dysfunction syndrome (MODS)", (6) "Late Septic Shock". The 6-class solution showed high entropy approaching 1 (i.e., 0.92), indicating there was excellent separation between estimated classes.
CONCLUSIONS: LCA appears to be an applicable statistical tool in analysing a heterogenous clinical cohort of septic shock. The results may lead to a better understanding of septic shock complexity and form a basis for considering targeted therapies and selecting patients for future clinical trials.
BT - J Crit Care C1 - https://www.ncbi.nlm.nih.gov/pubmed/29933169?dopt=Abstract DO - 10.1016/j.jcrc.2018.06.012 J2 - J Crit Care LA - eng N2 -PURPOSE: Septic shock is a highly heterogeneous condition which is part of the challenge in its diagnosis and treatment. In this study we aim to identify clinically relevant subphenotypes of septic shock using a novel statistic al approach.
METHODS: Baseline patient data from a large global clinical trial of septic shock (n = 1696) was analysed using latent class analysis (LCA). This approach allowed investigators to identify subgroups in a heterogeneous population by estimating a categorical latent variable that detects relatively homogeneous subgroups within a complex phenomenon.
RESULTS: LCA identified six different, clinically meaningful subphenotypes of septic shock each with a typical profile: (1) "Uncomplicated Septic Shock, (2) "Pneumonia with adult respiratory distress syndrome (ARDS)", (3) "Postoperative Abdominal", (4) "Severe Septic Shock", (5): "Pneumonia with ARDS and multiple organ dysfunction syndrome (MODS)", (6) "Late Septic Shock". The 6-class solution showed high entropy approaching 1 (i.e., 0.92), indicating there was excellent separation between estimated classes.
CONCLUSIONS: LCA appears to be an applicable statistical tool in analysing a heterogenous clinical cohort of septic shock. The results may lead to a better understanding of septic shock complexity and form a basis for considering targeted therapies and selecting patients for future clinical trials.
PY - 2018 SP - 70 EP - 79 T2 - J Crit Care TI - Six subphenotypes in septic shock: Latent class analysis of the PROWESS Shock study. VL - 47 SN - 1557-8615 ER -