02228nas a2200181 4500000000100000008004100001100001700042700001300059700001700072700001400089700001300103700001900116245009600135250001500231050001600246520173300262020005101995 2017 d1 aHeerspink H.1 aDesai M.1 aMeininger G.1 aJardine M1 aBalis D.1 aPerkovic Vlado00aCanagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects a2016/08/20 a[IF]: 9.3433 a
Sodium-glucose cotransporter 2 inhibition with canagliflozin decreases HbA1c, body weight, BP, and albuminuria, implying that canagliflozin confers renoprotection. We determined whether canagliflozin decreases albuminuria and reduces renal function decline independently of its glycemic effects in a secondary analysis of a clinical trial in 1450 patients with type 2 diabetes receiving metformin and randomly assigned to either once-daily canagliflozin 100 mg, canagliflozin 300 mg, or glimepiride uptitrated to 6-8 mg. End points were annual change in eGFR and albuminuria over 2 years of follow-up. Glimepiride, canagliflozin 100 mg, and canagliflozin 300 mg groups had eGFR declines of 3.3 ml/min per 1.73 m2 per year (95% confidence interval [95% CI], 2.8 to 3.8), 0.5 ml/min per 1.73 m2 per year (95% CI, 0.0 to 1.0), and 0.9 ml/min per 1.73 m2 per year (95% CI, 0.4 to 1.4), respectively (P<0.01 for each canagliflozin group versus glimepiride). In the subgroup of patients with baseline urinary albumin-to-creatinine ratio >/=30 mg/g, urinary albumin-to-creatinine ratio decreased more with canagliflozin 100 mg (31.7%; 95% CI, 8.6% to 48.9%; P=0.01) or canagliflozin 300 mg (49.3%; 95% CI, 31.9% to 62.2%; P<0.001) than with glimepiride. Patients receiving glimepiride, canagliflozin 100 mg, or canagliflozin 300 mg had reductions in HbA1c of 0.81%, 0.82%, and 0.93%, respectively, at 1 year and 0.55%, 0.65%, and 0.74%, respectively, at 2 years. In conclusion, canagliflozin 100 or 300 mg/d, compared with glimepiride, slowed the progression of renal disease over 2 years in patients with type 2 diabetes, and canagliflozin may confer renoprotective effects independently of its glycemic effects.
a1533-3450 (Electronic)